Search results for "Upper triangular matrices"
showing 2 items of 2 documents
Gradings on the algebra of upper triangular matrices and their graded identities
2004
Abstract Let K be an infinite field and let UT n ( K ) denote the algebra of n × n upper triangular matrices over K . We describe all elementary gradings on this algebra. Further we describe the generators of the ideals of graded polynomial identities of UT n ( K ) and we produce linear bases of the corresponding relatively free graded algebras. We prove that one can distinguish the elementary gradings by their graded identities. We describe bases of the graded polynomial identities in several “typical” cases. Although in these cases we consider elementary gradings by cyclic groups, the same methods serve for elementary gradings by any finite group.
Superinvolutions on upper-triangular matrix algebras
2018
Let UTn(F) be the algebra of n×n upper-triangular matrices over an algebraically closed field F of characteristic zero. In [18], the authors described all abelian G-gradings on UTn(F) by showing that any G-grading on this algebra is an elementary grading. In this paper, we shall consider the algebra UTn(F) endowed with an elementary Z2-grading. In this way, it has a structure of superalgebra and our goal is to completely describe the superinvolutions which can be defined on it. To this end, we shall prove that the superinvolutions and the graded involutions (i.e., involutions preserving the grading) on UTn(F) are strictly related through the so-called superautomorphisms of this algebra. We …